English

师资队伍

当前位置: 首页 > 师资队伍 > 物理系 > 正文

薛飞

发布日期:2023-02-25 来源: 阅读次数:

文本框: 姓名:薛飞职称:教授院系:williamhill威廉希尔官网物理系邮箱:xfei.xue@hfut.edu.cn联系:微信 戴眼镜留胡须的年轻男人描述已自动生成

个人简介:
       薛飞,williamhill威廉希尔官网教授,博士生导师。1999年和2004年先后获得中国科学技术大学应用物理学学士学位和粒子物理与原子核物理博士学位。先后在中国科学院理论物理研究所,日本理化学研究所,以色列理工大学电子工程系,瑞士巴塞尔大学物理系和合肥物质科学研究院强磁场科学中心工作,2022年受聘为williamhill威廉希尔官网教授。主要研究领域为量子精密测量,特别是与灵敏力探测相关的弱磁测量和纳米光力系统。其它研究领域包括利用核自旋进行量子信息处理和超导量子电路和机械振子构成的量子系统及其量子计算应用。使用磁共振力显微镜系统首次观测到半导体材料中原子核自旋统计极化[Phys. Rev. B 84, 205328 (2011)];展示了利用磁共振力技术俘获、操控自旋极化的方法[Nature Phys. 9, 631 (2013) ]。研发完成动态悬臂梁扭矩测磁学装置,其最小可探测样品磁矩灵敏度是商业振动磁强计的千万分之一,灵敏度达到了10 E-15 emu量级[Phys. Rev. Appl. 11, 054007 (2019) ]

研究方向:

量子精密测量与传感

      测量与传感是数字世界感知物理世界的源头。从最初的机械-电子传感到光-电子传感,到现在量子传感,精密测量与传感达到了前所未有的精度。量子精密测量也被称为量子增强测量,其基本原理是利用力、电、磁、光与量子系统相互作用,实现对各种物理量超高精度的测量。2018年第26届国际计量大会正式通过决议,从2019年开始实施新的国际单位定义,从实物计量标准转向量子计量标准,标志着精密测量已经进入量子时代。目前代表精密测量最高水平的7个基本物理量的计量基准已经全部实现量子化,同时作为精密测量的重要组成部分 -弱力(惯性)测量和弱磁 - 也开始进入量子时代。

 

纳米光力系统:

      腔光力学系统在精密测量与量子传感有重要的应用。在大空间尺度上,激光干涉引力波天文台(LIGO)中的腔光力系统位移测量灵敏度已超过10E-23 m/rtHz。在微小空间尺度上,随着微纳加工技术与微纳结构光学调控的发展,我们已经可以制备与光波长可比拟的物质结构并在光波长尺度上对光场进行调控,纳米光力系统已经具备成熟的技术实现条件。纳米光力系统研究微小尺度下的精密测量与量子传感,如微纳米尺度下的力、电、磁场的精密测量。

动态悬臂梁测磁学:

      磁性纳米颗粒在量子磁性、纳米磁性、低维磁性、高密度磁记录,磁传感器等领域有重要的应用。磁性纳米颗粒的低维特性使它们具有不同于宏观磁体的磁构型,因此对大量纳米颗粒进行系综表征和研究难以分析单个纳米颗粒磁矩的大小和取向并进而得到对纳米颗粒单体磁性的理解。依托长期积累的灵敏力探测技术,我们研制了一台动态悬臂梁磁矩仪,可以实现强磁场、极低温和高真空等极端条件下纳米颗粒单体的磁性表征,磁矩测量灵敏度可达10E-15 emu,达到了世界先进水平,与使用超导干涉仪的振动磁强计相比,磁矩测量灵敏度都提高了一千万倍。我们主要使用动态悬臂梁测磁学表征和研究纳米颗粒、纳米线和二维磁性材料的磁性质。

 

基金项目:

1. 国家自然科学基金 , 基于抗磁悬浮自旋-力学耦合系统的微米尺度非牛顿引力精确检测, 在研;

2. 合肥物质科学技术中心,硫属化合物二维固体自旋结构调制及输运行为优化;

3. 科技部国家重点研发计划,基于DM相互作用的拓扑磁结构制备、操作及原型器件探索;

4. 中国科学院合肥大科学中心,基于灵敏力探测的微纳样品磁测量 - 关键技术和装置研发;

5. 国家自然科学基金,单根磁性纳米管和低维螺旋磁体的磁性实验研究;

6. 海外高层次青年人才计划,磁共振力显微镜。

 

研究生招生:

每年招收硕士生和博士生2-4人,要求考生对物理研究或电子信息研究有强烈的兴趣,最好具有物理学或电子科学与技术等相关专业背景。

本科生招生:

常年招收对物理研究有强烈兴趣且成绩优秀的本科生参与实验室的科学研究工作。

代表论文:

1.  Out-of-plane and In-plane Magnetic Phases of a FeGe Slab Detected by Dynamic Cantilever Magnetometry, Feng Xu; Ning Wang; Wanli Zhu; Changjin Zhang; Mingliang Tian, Fei Xue, Journal of Physics D: Applied Physics, 56, 065002(2023).

2.  Dynamic Cantilever Magnetometry of Paramagnetism with Slow Relaxation, Zhiyu Ma, Kun Fan, Qi Li, Feng Xu, Lvkuan Zou, Ning Wang, Li-Min Zheng, and Fei Xue, Dynamic Cantilever Magnetometry of Paramagnetism with Slow Relaxation, Chin. Phys. Lett. 39, 037501 (2022).

3.  Large-scale area of magnetically anisotropic nanoparticle monolayer films deposited by MAPLE, Lei Zhang, Feng Xu, Jian Zhang, Baoru Bian, Yong Hu, Fei Xue, Juan Du, Journal of Materials Science & Technology 106, 28 (2022).

4.  Inferring the magnetic anisotropy of a nanosample through dynamic cantilever magnetometry measurements, Yang Yu, Feng Xu, Shanshan Guo, Ning Wang, Lvkuan Zou, Baomin Wang, Run-Wei Li, and Fei Xue, Appl. Phys. Lett. 116, 193102 (2020).

5.  Metal–Metalloligand Coordination Polymer Embedding Triangular Cobalt–Oxo Clusters: Solvent- and Temperature-Induced Crystal to Crystal Transformations and Associated Magnetism, Kun Fan, Feng Xu, Mohamedally Kurmoo, Xin-Da Huang, Chwen-Haw Liao, Song-Song Bao, Fei Xue, and Li-Min Zheng, Inorganic Chemistry 59 (13), 8935-8945 (2020).

6.  Method for Assembling Nanosamples and a Cantilever for Dynamic Cantilever Magnetometry, Feng Xu, Shanshan Guo, Yang Yu, Ning Wang, Lvkuan Zou, Baomin Wang, Run-Wei Li, and Fei Xue, Phys. Rev. Applied 11, 054007 (2019).

7.  Measuring the orientation of the flexural vibrations of a cantilevered microwire with a micro-lens fiber-optic interferometer, Chenghua Fu, Wanli Zhu, Wen Deng, Feng Xu, Ning Wang, Lvkuan Zou, and Fei Xue, Appl. Phys. Lett. 113, 243101 (2018).

8.  2D Magnetic Mesocrystals for Bit Patterned Media, Shanshan Guo, Feng Xu, Baomin Wang, Ning Wang, Huali Yang, Pravarthana Dhanapal, Fei Xue, Junling Wang, and Run-Wei Li, Adv. Mater. Interfaces, Volume5, Issue21, 1800997 (2018).

9.  Dynamic cantilever magnetometry of individual Co nanosheets and applicable conditions of uniaxial magnetic anisotropy assumption, Yang Yu, Feng Xu, Ning Wang, Lvkuan Zou, and Fei Xue, Japanese Journal of Applied Physics 57, 090312 (2018).

10. Generating giant and tunable nonlinearity in a macroscopic mechanical resonator from a single chemical bond, Pu Huang, Jingwei Zhou, Liang Zhang, Dong Hou, Shaochun Lin, Wen Deng, Chao Meng, Changkui Duan, Chenyong Ju, Xiao Zheng, Fei Xue, and Jiangfeng Du, Nat. Commun. 7, 11517 (2016).

11. Stabilized Skyrmion Phase Detected in MnSi Nanowires by Dynamic Cantilever Magnetometry, A. Mehlin, Fei Xue, D. Liang, H.F. Du, M.J. Stolt, S. Jin, M.L. Tian, and M. Poggio, Nano Lett. 15, 48394844 (2015).

12. Manipulation of the nuclear spin ensemble in a quantum dot with chirped magnetic resonance pulses, Mathieu Munsch, Günter Wüst, Andreas V. Kuhlmann, Fei Xue, Arne Ludwig, Dirk Reuter, Andreas D. Wieck, Martino Poggio, and Richard J. WarburtonNature Nanotech. 9, 671 (2014).

13. Highly Stable Skyrmion State in Helimagnetic MnSi Nanowires, Haifeng Du, John P. DeGrave, Fei Xue, Dong Liang, Wei Ning, Jiyong Yang, Mingliang Tian, Yuheng Zhang, and Song Jin, Nano Lett. 14, 20262032 (2014).

14. Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble, B. E. Herzog, D. Cadeddu, Fei Xue, P. Peddibhotla, and M. PoggioAppl. Phys. Lett. 105, 043112 (2014).

15. Nanoscale multifunctional sensor formed by a Ni nanotube and a scanning Nb nano-SQUID, J. Nagel, A. Buchter, Fei Xue, O. F. Kieler, T. Weimann, J. Kohlmann, A. B. Zorin, D. Ruffer, E. Russo- Averchi, R. Huber, P. Berberich, A. Fontcuberta i Morral, D. Grundler, R. Kleiner, D. Koelle, M. Poggio, and M. Kemmler, Phys. Rev. B 88, 064425 (2013).

16. Harnessing nuclear spin polarization fluctuations in a semiconductor nanowire, P. Peddibhotla, Fei Xue, H. I. T. Hauge, S. Assali, E. P. A. M. Bakkers, M. Poggio, Nature Phys. 9, 631 (2013).

17. Reversal Mechanism of an Individual Ni Nanotube Simultaneously Studied by Torque and SQUID Magnetometry, A. Buchter, J. Nagel, D. Ruffer, Fei Xue, D. P. Weber, O. F. Kieler, T. Weimann, J. Kohlmann, A. B. Zorin, E. Russo-Averchi, R. Huber, P. Berberich, A. Fontcuberta i Morral, M. Kemmler, R. Kleiner, D. Koelle, D. Grundler, and M. Poggio, Phys. Rev. Lett. 111, 067202 (2013).

18. Probing Single-Charge Fluctuations at a GaAs/AlAs Interface Using Laser Spectroscopy on a Nearby InGaAs Quantum Dot, J. Houel, A.V. Kuhlmann, L. Greuter, Fei Xue, M. Poggio, B.D. Gerardot, P.A. Dalgarno, A. Badolato, P.M. Petroff, A. Ludwig, D. Reuter, A.D. Wieck, and R.J. Warburton, Phys. Rev. Lett. 108, 107401 (2012).

19. Measurement of statistical nuclear spin polarization in a nanoscale GaAs sample, Fei Xue, D. P. Weber, P. Peddibhotla, and M. Poggio, Phys. Rev. B 84, 205328 (2011).

20. A geometry for optimizing nanoscale magnetic resonance force microscopy, Fei Xue, P. Peddibhotla, M. Montinaro, D. P. Weber, and M. Poggio, Appl. Phys. Lett. 98, 163103 (2011).

21. Metastability in a nanobridge-based hysteretic dc SQUID embedded in a superconducting microwave resonator, Eran Segev, Oren Suchoi, Oleg Shtempluck, Fei Xue, and Eyal Buks, Phys. Rev. B 83, 104507 (2010).

22. Controllable coupling between flux qubit and nano-mechanical resonator by magnetic field, Fei Xue, Y. D. Wang, C. P. Sun, H. Okamoto, H. Yamaguchi and K. Semba, New J. Physics 9, 35 (2007).

23. Two-mode squeezed states and entangled states of two mechanical resonators, Fei Xue, Yu-xi Liu, C. P. Sun, and Franco Nori, Phys. Rev. B 76, 064305 (2007).

24. Analogue of cavity quantum electrodynamics for coupling between spin and a nanomechanical resonator: Dynamic squeezing and coherent manipulations, Fei Xue, Ling Zhong, Yong Li, and C. P. Sun, Phys. Rev. B 75, 033407 (2007).

25. Cooling a micromechanical beam by coupling it to a transmission line, Fei Xue, Y. D. Wang Yu-xi Liu, and Franco Nori, Phys. Rev. B 76, 205302 (2007).

26. Quantum control limited by quantum decoherence, Fei Xue, Si-Xia Yu, and Chang-Pu Sun, Phys. Rev. A 73, 0134032006.

27. Experimentally Obtaining the Likeness of Two Unknown Qubits on a Nuclear-Magnetic-Resonance Quantum Information Processor, Fei Xue, Jiang-Feng Du, Xian-Yi Zhou, Rong-Dian Han, and J-H Wu, Chinese Phys. Lett. 20, 1669-1671 (2003).

28. Architecture of a deterministic quantum central processing unit, Fei Xue, Z-B Chen, M-J Shi, Xian-Yi Zhou, Jiang-Feng Du, and Rong-Dian Han, Phys. Lett. A 312, 301-306 (2003).

 

发明专利:

1.  王宁; 徐峰; 薛飞,力测量装置, CN202010263728

2.  王宁; 薛飞,一种激光干涉法信号提取系统, CN201711281806

3.  邹吕宽; 王宁; 薛飞,一种使用保偏光纤和双微透镜测量纳米线位移的装置, CN201711268230